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DNA mutations are essential to evolution. They are the cause of genetic variation. 
DNA structure however, between the mutations, is hypothesized to be mostly 
conserved between close ancestors, as to not greatly affect the function of the 
gene. This was tested by statistically comparing the effect of mutations on 
secondary structure MFE, minimum free energy, from a human-primate ancestor 
(labelled HP) to human, and comparing it with a fictional mutation of human-
primate ancestor to a sample data set with 1 random mutation (labelled Random). 
The hypothesis was that the mean difference in MFE would be significantly 
lower in the real evolutionary data compared to the random sample data. I 
conclude that, although the means differed in the direction predicted, the 
difference was not significant enough to discount type I error. Future applications 
of the algorithm could help refine the algorithm and retest the hypothesis.
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1. Introduction 

DNA is ubiquitous in the cell and is 
extremely important. DNA effects are 
determined by its structure, the DNA 
folded onto itself, which is in turn 
affected by its sequence. (Alberts et al, 
2002).  This folding process generates a 
secondary structure.  This secondary 
structure of DNA therefore predicts the 
effect the gene has on the species.  

Mistakes are made during DNA 
replication. These errors affect the 
folding of the secondary structure and 
in turn affect the function of the gene.  
These mistakes are the ultimate source 
of genetic variation. Mutations occur 
throughout the genome at a rate of 
~1x10^-8 per site per generation in 
humans (Nachman et al, 2000). These 
rates vary from species to species and 
even at different sites within the same 
species. 

Mutations in DNA, and in turn RNA, 
are what cause variability among all 
existing species. Most gene-coding 
regions in an organism do not allow 
mutations with large fitness effects, as 
these effects prohibit the organism’s 
ability to procreate and survive (Eyre-
Walker, 2006). Because DNA secondary 
structure is extremely important for the 
function of DNA, I predict that 
mutations that have minimal effects on 
secondary structure would be more 
likely to be found in close ancestors.  
Evolution desires to preserve function 
and secondary structure predicts the 
function of the gene.   

Today’s different species can be traced 
back to their evolutionary origins (Cole 
et al., 2005). Phylogenetic trees 
inferring evolutionary relationships 
among various biological species or 
other entities, based upon similarities 
and differences in their physical or 
genetic characteristics, have been 
developed (Letunic et al, 2006). In this 
study, this evolutionary assumption 
forms the basis for the hypothesis that 
because of the effect secondary 
structure has on the function of DNA 
segments, close evolutionary ancestors’ 
DNA mutations should affect their 
secondary structure less than that of 
random mutations.  

This study makes many simplifying 
assumptions about mutation specificity, 
as well as mutation rate. It assumes that 
in our gene-segment there will always 
be one and only one mutation. It also 
assumes that this mutation has an equal 
probability of mutating any given 
nucleotide to any other. These two 
assumptions are not true to nature.  
However, if it can be shown that there is 
a significant difference between these 
pseudo-real random mutations and our 
evolutionary data, generalizations to fit 
real random mutations can be made.  

Other studies have used phylogeny to 
help improve secondary structure 
prediction accuracy (Zuker et. al., 
1991). This method differs from 
previous studies in that it examines the 
relat ionship between secondary 
structure preservation and ancestral 
relation. To the best of my knowledge, 
this has never been previously 
examined.  

https://en.wikipedia.org/wiki/Evolution%22%20%5Ct%20%22_blank%22%20%5Co%20%22Evolution
https://en.wikipedia.org/wiki/Species%22%20%5Ct%20%22_blank%22%20%5Co%20%22Species
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2. Methodology 

I am interested in comparing the 
secondary structure of DNA between 
close evolutionary ancestors (HP-
Human) and minimally mutated random 
data (HP-Random). I’ve hypothesized 
that the ancestral data should have less 
effect on DNA secondary structure than 
random point mutations. 

I began with a multiple sequence 
alignment of human chromosome 22 to 
other genetically related sequences. For 
this paper, I was only interested in 
secondary structure differences between 
a Human-Primate ancestor (HP) and 
Human. To compare this data to random 
point mutations, single nucleotide 
mutations on the HP data were 
generated to create a Random dataset. 
Using mutation data given in .maf 
format, I extracted all of the data 
pertaining to these two sets and stored 
them in a .fasta file using Biopython, an 

open source bioinformatics tool library 
for python. This allowed the date to be 
quickly parsed into a format which 
could be efficiently handled by the 
viennaRNA package.  

 I randomly selected a selected a sample 
of ~700 pairs of HP-Human mutation 
data and ~700 from HP-Random. 
ViennaRNA’s RNAfold was used to 
compute the secondary structure and 
MFE values of both data sets (see 
Figure 1).  Once MFE values were 
computed for all the 2800 secondary 
structures, I looked at differences 
between the MFE values within their 
respective sets (HP_MFE-Human_MFE 
and HP_MFE-Random_MFE).  The 
means of the data and summed totals 
were calculated, and a t-statistic was 
used to determine if there were 
significant differences in the values.  

Figure 1: Illustrates an example of DNA secondary structure data from both data sets. 
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3. Results 

After running the algorithm, as well as 
viennaRNA’s RNAfold on the data, the 
results were examined. The hypothesis 
was that the Human data, because it was 
closely evolutionarily related to the 
Human-Primate (HP) ancestor data, 
would be more similar in 𝛿-mean, and 
have a lower summed minimum free 
energy.  

While this was true, with a 𝛿-mean of 
-3.08 and summed MFE of -207.03 for 
HP-Human and a 𝛿-mean of 0.93 and 
summed mean of 22.42 for HP-
Random, the difference was not 

significant. An independent samples t-
test was computed on the data.  The 
results showed that these deviations 
were not significantly different from 
random using p<0.05, with t=0.093 < t-
critical=1.962. 

I have graphed the data to illustrate the 
minimal differences in the 𝛿-means of 
the two datasets. 

Figure 2: HP-HUMAN 𝛿-mean values plotted along the X-axis.



McGill University Cooke, M. !5

Figures 2, 3 and 4 illustrate the minimal 
difference in values between the two 
datasets when comparing 𝛿-means.  

It is important to understand that 
although the data is not statistically 
significant, the results suggest that there 

may be a better way to conduct the 
analyses and construct the datasets in 
order to improve the significance of the 
results. Ideas about how to alter the 
methodology and analysis of the study 
will be discussed in the following 
section.  

Figure 3: HP-RANDOM 𝛿-mean values plotted along the X-axis.

Figure 4: HP-HUMAN (Blue) and HP-RANDOM (Red) data overlapped.
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4. Discussion and future work 

While the results obtained in this study 
were not statistically significant, given 
that this area of investigation is in its 
infancy and there were possible 
sampling limitations, as outlined below, 
I believe that further investigation into 
the hypothesized relationship is 
warranted.  Methods for improving the 
algorithm and the datasets will be 
discussed, as well as directions for 
future research.     

1. Improving the Algorithm 
The current version of the algorithm 
makes several assumptions about 
random mutations to the DNA. Firstly, 
it assumes only one nucleotide is 
mu ta t ed pe r compar i son . Th i s 
assumption was made because it is the 
strictest version of the algorithm that 
can be hypothesized. If the results were 
significant, which they were not, this 
would have meant significant results 
could have been generalized to a large 
number of mutations. The second 
assumption that was made about the 
data is that the single random mutation 
was equally likely anywhere along the 
gene segment, and was likely to mutate 
to any other nucleotide with equal 
probability (p = ¼).  Again, this 
assumption was made to test the 
strictest case in an initial study. 
Changing the probabilities to more 
evolution-like styles should in turn 
narrow the effect of these mutations 
because of the interactions with 
neighbour nucleotides.  

In a consequent study, either of these 
two corrections could be applied with 
relative ease. It would also make sense 
to compare HP-Human and HP-
Random to some far ancestor of HP. 
The further we go up the phylogenetic 
tree, the closer to the HP-Random 
dataset and further from HP-Human our 
results should become. The more two 
genetic segments  are separated from an 
evolutionary perspective, the less 
similar their sequences, and therefore 
structure, should be.   Follow up studies 
should be done to examine these 
avenues and test their significance.  

I also ran into issues sending large 
datasets into the viennaRNA package 
and had to reduce my data to a random 
sample o f 683 code-segments . 
Improving this portion of the algorithm 
may be more representative of the 
population, and increase the validity of 
the results. 

2. Improvements on the Data 
There are multiple ways in which the 
data utilized in the study could be 
improved. Firstly, testing could be 
narrowed to consist of only a range of 
gene-segment lengths. This would help 
to reduce variance in the samples and 
generate clearer results. Some of the 
gene-segments used were as short as 2 
nucleotides, where a mutation would 
completely change the sequence. If a 
range of gene-segments of 20-50 
nucleotides was examined, an improved 
comparison of the algorithm could be 
generated. 
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Another limitation of the current data is 
the method used to compare the 
secondary structure. Although MFE 
values allow for easy comparison of the 
secondary structure, they do not always 
accurately depict the structure. Methods 
of simultaneous folding and alignment 
can be used to calculate the best 
singular structure between 3 sets of 
data: HP only, HP-Human, and HP-
Random.  We can then look at the 
change in secondary structure from HP 
to HP-Human and from HP to HP-
Random, seeing if the latter cause a 
larger change (see Turner et. al., 2002). 
Multivariate data analysis would 
provide a better statistical test of the 
hypothesis. 

Running Time 
It may also prove beneficial to run these 
computations on more powerful 
hardware. To parse the current 
algorithms, manipulate and perform 
computations on the large datasets took 
upwards of 0.5 hrs per dataset on a 
2.6GHz core i7. Parallelization of the 
computations may exponentially 
decrease running time, as well as access 
to better hardware. The viennaRNA 
package can process 100 x 100 
nucleotides samples in 0.01 seconds. 
(Lorenz et al. 2011).  Utilizing these 
methods would allow the testing of 
large data samples.  

Future work 
In the future, I would like to retest my 
a l g o r i t h m a f t e r m a k i n g t h e 
modifications stated above. I am 
confident that the hypothesis promises 

statistically significant results if the data 
and algorithm more accurately represent 
the question at hand. The improvements 
to both the sample-data and the 
algorithm are relatively minor and 
could be easily accomplished in a 
follow-up study. 
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