

An Approach to Maze Generation AI, and Pathfinding in a
Simple Horror Game

Matthew Cooke and Aaron Uthayagumaran

McGill University

I. Introduction

We set out to create a game that utilized
many fundamental topics from class. Our
game is based on a generated maze that
continuously expands in size as the player
navigates the terrain. We wanted to
efficiently generate new lengths of maze
while having enemies pathfind through the
maze. The player is dropped into a closed,
dark, corridor with only a flashlight; very
little information is given to the player. The
objective of the game is to navigate the
maze while avoiding enemies, in order to
ultimately find a treasure.

The initial perfect maze is generated using
backtracking techniques in order to allow for
branching while preventing loops or
unreachable sections of the maze to be
developed. Furthermore, the Game Manager
stores a list of Maze instances. As the player
traverses the maze, there exists boundaries
that when crossed will signal the Game
Manager to create an adjacent maze in the
direction represented by the boundary. This
allows for the maze to be perceived as
infinite in size as the player will not be able
to distinguish the interior of the mazes a
part. The player is controlled with a
first-person view of a camera, using lighting
tricks to give the user the illusion of holding
a flashlight. When the maze is generated,
invisible monsters as well as a treasure chest
are placed into random corridors, which the
player does not know the location of. Both
the enemies and the treasure chest use sound
as a means of warning the player of their
location. The player must then attempt to
navigate to the treasure while avoiding
enemies. If the player successfully reaches
the chest, the game ends and the player
wins. If the player is caught by an enemy,
the game ends and the player loses. We

needed to be able to generate mazes, allow
for one or more enemies to use pathfinding
techniques, and use dynamic lighting
efficiently.

We succeeded in generating the mazes
during runtime, as well as placing AI
enemies in these generated mazes. The game
acts as a seamless experience to the player;
they do not notice the transition from old to
newly generated mazes. Once the player
reaches a threshold, the monsters follow the
player effectively. Although we initially
planned on using A* search for the monster
to simply move towards the player. This was
later modified to use a pseudo-occupancy
map approach for target tracking. Moreover,
the enemy moves cell to cell depending on
the probability of the player being at the
cell, where the probability is defined based
on the enemy’s field of view. If the enemy
were to see the player via ray casting then
the first cell towards the player will be given
a probability of 100%, with adjacent cells
acquiring a probability based upon the
defined diffusion rate of the probability.
This allowed for a somewhat intelligent
enemy that the player must escape from, as
the game ends once the enemy captures the
player.

II. Background

We focused on 3 main topics during this
project: a) Procedural generation of our
maze, b) AI, and c) pathfinding.

a) Procedural generation has been a topic

studied extensively in modern computer
game development. Many algorithms
have been proposed to handle terrain
generation, in 2D and 3D, as well as
maze generation. (Okamoto, 2009)

There are various types of mazes
defined in modern games, our game
specifically focusing on perfect mazes.

b) AI is currently one of the most

researched fields in computer science.
AI algorithms are implemented almost
everywhere we look. From
data-analysis (Fayad, 1996), to complex
aviation software (Mckeown, 2007), to
modern video games (Russel & Norvig,
1995). Although many complex
algorithms are used, game AI has
ultimately one goal, to give the agents
the illusion of intelligence. We focused
on two different methods when testing
this project, a probabilistic search (Isla,
2013), and a simple automated walk
(Quinlan, 1986).

c) Pathfinding has been another major

topic in computer science, especially
the video game industry. (Bulitko,
2010). A common pathfinding
technique is A* search in which the
path is defined by the optimal f-value.
The f-value being defined by the
heuristic and cost. Using Manhattan
distance as a consistent measure for
both the heuristic, the distance from the
enemy to the player as well as the cost
the distance travelled, A* was best
suited to complement the maze and AI.
We adjusted this pathfinding however,
when the player leaves the sight of the
enemy, to diffuse possible locations
probabilistically. This allows the enemy
to search more naturally for a player
who has exited line of sight.

III. Methodology

The game we designed, encapsulates various
techniques and algorithms that allow for a
promising user experience. Utilizing basic
backtracking techniques, perfect mazes were
generated seamlessly. Exploring the many
features supplied by Unity, a comfortable,
more user engaging interface is constructed.
Additionally, the concept of occupancy
graphs allowed for the enemy AI to have
more realistic feel to search for the player.

III.I. Maze Generation

The game begins with the player perceived
to be trapped in a maze, which seems to
have no end. However, unknown to the
player the ir perception is correct, as the
maze itself expands in size whenever the
player crosses a certain threshold. Moreover,
a new Maze instance is instantiated to the
current maze if necessary. Furthermore, with
the additional aesthetics the maze adapts an
eerie dungeon-like feel for the player to
traverse to add to our horror themed game.

The GameManager script will instantiate the
initial Maze prefab, where the maze is to be
constructed as a 15 x 15 grid of MazeCell
objects. We will refer the the 15 x 15 mazes
as a “Maze Space”. Each MazeCell is about
3 x 3 units in size, which contains a set of
booleans to represent if there is a wall at
each side of the cell (ie. North, East, South,
West). To ensure that no loops are created
and that there are no unreachable cells a
backtracking algorithm is utilized. Firstly, a
random MazeCell is initialized, this cell is
arbitrarily selected within the 15 x 15 array
of MazeCells in the Maze Space. The cell is
then marked as visited and stored in a stack
of cells that have been visited. Next, a

random direction is selected that does not
already have a wall, a new adjacent cell is
initialized and is pushed to the top of the
stack. With each iteration, the algorithm
continues to traverse through the maze
generating each cell. However, if the
random direction chosen has already been
initialized, both cells mark their respective
direction to one another as a wall and a new
direction is chosen, to prevent loops. Once
all directions for cell is occupied by a wall
or is a path to another cell, the MazeCell
object is popped from the list as it no longer
has any viable direction, to allow for
branching. With both branching and no
loops in the Maze, we have successfully
generated a perfect maze. It should be noted
there are two special case of MazeCell, the
boundary cells which have a wall to enclose
the maze and a subset of boundary cells, the
four enterance cells which do not have a
wall for their respective side, (0, 7), (14, 7),
(7, 0), and (7, 14) to allow for movement
between mazes.

After the MazeCells have been initialized,
four boundary columns are instantiated, two
vertical at ±12 units from the center and two
horizontal at ±12 units from the center.
These boundaries use box colliders with
triggers attached to respond when a
RigidBody, which is the Player object
intersects the the boundary. Depending on
the boundary crossed an adjacent maze will
be constructed with the same rules that the
initial maze followed. Recall, that the mazes
have 4 entrance as such the entrance are now
adjacent allowing the player to transition
between mazes without noticing at all.

Lastly, to allow for the player to experience
the overall horror aspect of the game several
assets available on Unity ere used. An
detailed stone material was used to allow the
interior of the maze to have an overall

dungeon-like appearance, which was aided
with the lack of a lighting source. A fog aset
was added to aid with the element of
surprise so that the player cannot see down
long corridors.

III.II. The Player

The player is controlled with a first-person
controller from Unity. This controller allows
for ‘W’ ‘A’ ‘S’ ‘D’ movement as well as
using shift as a modifier to run. It also
allows us to hook the mouse and use it to
look around. We attached this controlled to a
camera, in order to get a first person view.
There is no physical representation of the
player’s body, only the view from the
camera. The camera is the parent of two
lighting effects, one to generate a diffuse
spatial light and the other for the point
“flashlight”. These are children of the
camera, and looking around therefore
changes the angle of light.

III.III. The Enemy

We designed our enemy to be located solely
using sound; it is therefore invisible. The
player can hear the enemy as they approach
and must decide which path through the
maze they will take. The enemies are placed
pseudo-randomly in each generated maze.
These enemies then walk around their
environment using basic AI. Enemies use a
raycast field-of-view system to determine
line of sight to the player, and if line of sight
is established, they use target tracking to the
player.

a) AI

The AI for the enemy involves basic
random movement of the enemy. After
the AI is randomly placed in the maze it
will continually move to a single
adjacent cell in a random direction. This
will repeat until the player is spotted in
the field of view. This is achieved by
using probability values for adjacent
cells equal to 0.1 and not 0 (Isla, 2013),
allowing the enemy to search its
immediate vicinity.

b) Field of View

The enemy's field of view is calculated
using raycasts in Unity. While the
enemy is wandering its area, it is
sending out invisible rays at each
update. These raycasts collide with any
collider in the environment, and
disappear. If they come into contact
with the player, they call a function the
checks the player’s location and
implements pathfinding to it. Rays are
computationally light in Unity, and
therefore can be cast regularly without
major CPU impact. (see Unity
Physics.Raycast)

c) Pathfinding via Target

Tracking

If the AI has not seen the Player,
moves at random throughout the maze.
More specifically the AI moves to the
cell which holds a greater probability.
In the case of a tie, one is chosen at
random. Initially, all cells are given a
probability of 1%, however, once a ray
from the cell hits the player the
probabilities will change. As the enemy
now sees the player, the first cell in the

direction of the player gets a probability
of 100% as such the enemy will move
towards that direction. All cell
probabilities diffuse to cells adjacent to
it by a factor of alpha, the enemy will
continue to move in the direction of the
player. In addition, if the player were to
leave the enemy’s field of view, the
enemy will still have an idea where to
go as the probability diffuses among
adjacent cells. This allows for the
player to experience as if the enemy is
chasing them even when the player
escaped a visual range.

III.IV. The Treasure

The goal of our game is to ultimately find a
large treasure chest. This chest is located
somewhere on one of the generate Maze
spaces, but never the initial 15x15 maze
space. Like our enemies, the treasure play an
audio cue to alert the player to their location.
When the player is alerted of the location of
the treasure, they may explore the
immediate surroundings in order to find it.

III.V. Ending the Game

The game ends in one of two ways: the
player gets caught by an enemy, or the
player successfully reaches the treasure
without getting caught. Each of these
scenarios are handle with colliders: one in
the enemy and one in the treasure chest. If
the player collides with the enemy, the Unity
scene is changed to a Game Over screen,
with an audio cue. Alternatively, if the
player reaches the chest, the Unity scene is
changed to a You Win screen.

IV. Results

To determine the effectiveness of the
pathfinding algorithm experiments were
conducted involving both the player and
enemy. To determine the effectiveness of
the pathfinding algorithm, the maze was
modified in order to place both the enemy
and player in 1 x 10 cell corridor. The player
would move around the corner of the
corridor in order to get out of the enemy’s
line of sight. (Figure 4) Five experiments
were conducted in which the enemy was
placed certain cell blocks away from the
player each experiment had 5 trials.

As the results indicate nearly always within
5 cell distance the player will get caught
even after they turn the corner. With a
distance of 6 and 7 the enemy caught the
player most times however, certain times the
enemy may move backwards, before
ultimately catching the target as the
probability diffused as such.

V.I. Conclusion

We started our project with the goal of
creating an infinitely large procedurally
generated maze, in which we would host a

horror game. We wanted to create a scary
atmosphere that could be expanded upon
indefinitely. Our game is by no means
finished, and we have many more ideas we
would like to implement. Working through
this project has taught us a lot, both about
game design principles and the Unity engine
itself. We intend to keep working together in
the Unity development environment after
the course, working on this and other
projects.

V.II. Future Work

There are many improvements that can be
done to our game. Firstly, although our
game is playable, it is not fully fleshed out.
We would like to add different maps and
textures, new enemies, new objectives, and a
story. It is also important to implement some
sort of minimap feature to keep track of
where the player has explored. We would
like to implement the Occupancy map
algorithm (Isla, 2013) fully, and improve the
enemy pathfinding. The enemy’s artificial
intelligence is also very basic, as they
random walk around their local area. This
can be improved by using decision trees to
perform different actions depending on
environmental information. Our maze
generation can also be improved; adding
terrain generation and complexity and
creating a true 3D maze, with elevation
changes, is planned. More optimisation can
also be done in order to allow for smoother
gameplay on lower-end machines.

VI. Supplemental Materials

Figure 1. Isla Probability Dispersion; AIGameDev.com

Figure 2. Initial Maze Space

Figure 3. Player reached threshold to generate next Maze Space

Figure 4. Player and enemy in testing corridor

VII. References

Artificial Intelligence; A Modern Approach. Stuart J. Russell and Peter Norvig. 1995.

Case-Based Subgoaling in Real-Time Heuristic Search for Video Game Pathfinding. Vadim
Bulitko, Yngvi Bjornsson, and Ramon Lawrence. 2010.

From Data Mining to Knowledge Discovery in Databases. Usama Fayyad, Gregory
Piatetsky-Shapiro, and Padhraic Smyth. 1996.

How to make a picturesque maze. Yoshio Okamoto and Ryuhei Uehara. 2009.

Induction of Decision Trees, Quinlan, J. Mach. 1986.

Occupancy Grids and Emergent Search Behavior for NPCs. Occupancy Grids and Emergent
Search Behavior for NPCs. AiGameDev.com. 2017.

The Role of Artificial Intelligence in the Integration of Remotely Sensed Data with Geographic
Information Systems. David M. Mckeown. 2007.

Third Eye Crime: Building a Stealth Game Around Occupancy Maps. Damián Isla. 2013.

