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I. Algorithm and Motivation 
 
For the artificial intelligence project of COMP 424 I was tasked with developing an intelligent               
player of the game Das Bohnenspiel (the bean game). This is a two player game in which each                  
player moves beans around different pits, trying to capture as many beans as possible. An               
artificially intelligent agent would, therefore, have to calculate the optimal, or near optimal,             
move to make for each turn. 
 
To accomplish this, I chose to use a Minimax algorithm with alpha-beta pruning. Minimax works               
by generating a search tree with MIN and MAX nodes alternating by depth. One player is                
assigned a “max” assignment and the other a “min” assignment. Typically, the MAX player is               
defined as the AI agent. Minimax works by assigning the maximum possible value from its               
children to the MAX nodes, and the minimum value from its children to the MIN nodes. Moves                 
are then chosen by the best possible node. Minimax with infinite depth is optimal if the opponent                 
also plays optimally, or always choose the correct MIN node. Α–β pruning was used in order to                 
ensure I was not computing paths worse than ones that had already been computed. 
 
My Minimax algorithm has some slight variations than the standard Minimax definition. Firstly,             
because I was constrained on computation time to <700ms per turn, I could not compute a full                 
Minimax tree. In order to accommodate this constraint, I chose a tree depth of 10, and added a                  
leaf node heuristic. This heuristic is used when we are at depth 10 in the tree. My heuristic is as                    
follows: 
 
alue (my score) (opponents score)] [(all my beans) (all opponents beans)] / 4v = [ −  +  −   

4,6)] * 4         [(any pits I  have of  2, , ) (any pits opponent has of  2, +  4 6 −   
 
I also implemented a random error in my computations in order to throw off other optimal                
agents. I assume that other agents will also use Minimax or other “optimal when opponent plays                
optimally” algorithms, and therefore, chose not to play optimally. Every 1/50 MAX or MIN              
nodes chooses a random child, instead of the MAX/MIN child.  
 
Lastly, I added a catch in case the time limit was approached. Although I have a defined depth,                  
we cannot control the breadth of the tree. Minimax is O(b^m). If I surpass 700ms computation                
time, our turn is ignored. Therefore, I only calculate Minimax for at most 500ms, and if this is                  
surpassed, it plays randomly. 
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II. Theory 
 
Minimax with Α–β pruning is the algorithm of choice for artificially intelligent agents in              
deterministic, perfect information games (Knuth, 1975). Das Bohnenspiel fits this definition. I            
chose Minimax with Α–β pruning because it is a somewhat efficient algorithm. Also, because              
our agents are playing against the agents of classmates, it can be assumed that the opponent is                 
playing pseudo-optimally.  
 

 
Figure 1. Minimax with Α–β pruning pseudocode 

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning 
 

 
 
III. Advantages and Disadvantages 
 
My approach beats the RandomBohnenspielPlayer with p>0.99, n=100, and         
GreedyBohnenspielPlayer with p>0.95, n=100. The approach, although exponential in time          
complexity, is limited in computational time, and therefore runs quickly. Α–β pruning ensures             
computation time is not wasted on nodes with sub-optimal paths. By playing randomly (p=0.02),              



3 

I can ‘confuse’ other AI agents that expect me to play optimally, without hampering my own                
performance drastically.  
 
Although this approach works well, it is not perfect. It is limited to a computation time of 700ms                  
and therefore cannot compute the entire tree; I chose a depth of 10. This means that my agent is                   
only ‘looking’ 10 moves into the future, and is not considering moves after this. Games in Das                 
Bohnenspiel are typically more than 10 moves. Playing randomly also decreases the optimality             
of my algorithm. If the opponent is using a strategy that plays optimally, independent from our                
play, we will be guaranteed to lose if we chose a random move that is sub-optimal (p=0.02 per                  
node). Statistically it is likely we will lose (p>0.95) against an optimal agent.  
 
 
IV. Other approaches 
 
Originally, I had implemented a Monte-Carlo-Tree-Search algorithm. MCTS is a generic           
best-first-search algorithm, that uses random simulation as an evaluation scheme (Jakl, 2011).            
MCTS performed well (win versus GreedyBohnenspielPlayer p>0.90, n=100), but lost to the            
Minimax algorithm when played against each other. Monte-Carlo-Tree-Search was also much           
harder to implement and more difficult to improve. I, therefore, decided to use and improve the                
Minimax with Α–β algorithm.  
 
MCTS had one major advantage over my Minimax approach. It did not require a predefined               
depth, and could compute indefinitely in the given time constraint. Therefore, it always used the               
most possible time allowed to compute its result. If given more time, I would like to improve my                  
MCTS approach. 
 
V. Future Work 
 
There are many improvements that can be made to optimize the Minimax algorithm (Stockman, 
1979).  Continuing to improve my heuristic function and improving the utilisation of all allotted 
time is a future goal. Currently, I ignore the extra 30 seconds given for initialization.  I would 
also like to rework and improve my Monte Carlo Tree Search approach. MCTS seems like it 
should be the dominant algorithm, and with more work, I believe it will beat my Minimax (Α–β), 
and do so in less time. 
 
Lastly, I would love to attempt a machine learning approach to this problem, allowing the agent 
to learn how to play on its own. Machine learning would allow for the agent to predict different 
strategies used by opponents and respond with counter-strategies.  
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